Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119718, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574823

RESUMO

Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.

2.
Sci Rep ; 13(1): 20153, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978256

RESUMO

Despite the rising interest in bacteriophages, little is known about their infection cycle and lifestyle in a multicellular host. Even in the model system Streptomyces, only a small number of phages have been sequenced and well characterized so far. Here, we report the complete characterization and genome sequences of Streptomyces phages Vanseggelen and Verabelle isolated using Streptomyces coelicolor as a host. A wide range of Streptomyces strains could be infected by both phages, but neither of the two phages was able to infect members of the closely related sister genus Kitasatospora. The phages Vanseggelen and Verabelle have a double-stranded DNA genome with lengths of 48,720 and 48,126 bp, respectively. Both phage genomes contain 72 putative genes, and the presence of an integrase encoding protein indicates a lysogenic lifestyle. Characterization of the phages revealed their stability over a wide range of temperatures (30-45 °C) and pH values (4-10). In conclusion, Streptomyces phage Vanseggelen and Streptomyces phage Verabelle are newly isolated phages that can be classified as new species in the genus Camvirus, within the subfamily Arquattrovirinae.


Assuntos
Bacteriófagos , Siphoviridae , Streptomyces , Streptomyces/genética , Genoma Viral , DNA Viral/genética , Siphoviridae/genética , Filogenia
3.
Med Sci (Paris) ; 39(11): 862-868, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-38018930

RESUMO

Viruses are parasites that infect all living organisms, and bacteria are no exception. To defend themselves against their viruses (phages), bacteria have developed numerous and sophisticated defense mechanisms, our understanding of which is rapidly growing. In the 2000s, only a handful of mechanisms were known and only two of them seemed to be found in most bacteria. In 2018, a new key method based on genome analysis revealed that there were likely many others. Indeed, over the past five years, more than 150 new mechanisms have been discovered. It is now estimated that there are probably thousands. This remarkable diversity, paralleled with the tremendous viral diversity, is evident both in terms of possible combinations of systems in bacterial genomes and in molecular mechanisms. One of the most surprising observations emerging from the exploration of this diversity is the discovery of striking similarities between certain bacterial defense systems and antiviral systems in humans, as well as plant (and eukaryotes in general) immune systems. Contrary to the previously accepted paradigm, organisms as diverse as fungi, plants, bacteria and humans share certain molecular strategies to fight viral infections, suggesting that an underestimated part of eukaryotic antiviral immunity could have evolved from bacterial antiviral defense systems.


Title: Immunité bactérienne : à la découverte d'un nouveau monde. Abstract: Les virus sont des parasites qui infectent tous les organismes vivants, et les bactéries n'y font pas exception. Pour se défendre contre leurs virus (les bactériophages ou phages), les bactéries se sont dotées d'un éventail de mécanismes élaborés, dont la découverte et la compréhension sont en pleine expansion. Dans les années 2000, seuls quelques systèmes de défense étaient connus et deux semblaient présents chez la plupart des bactéries. En 2018, une nouvelle méthode fondée sur l'analyse des génomes a révélé l'existence potentielle de nombreux autres. Plus de 150 nouveaux systèmes anti-phages ont été découverts au cours des cinq dernières années. On estime maintenant qu'il en existe probablement des milliers. Cette formidable diversité, qui est à mettre en parallèle avec la considérable diversité virale, s'exprime tant en termes de combinaisons de systèmes possibles dans les génomes bactériens que de mécanismes moléculaires. Une des observations les plus surprenantes qui émerge est la découverte de similarités entre certains systèmes de défense bactériens et des mécanismes antiviraux eucaryotes. Contrairement au paradigme jusqu'alors en place, des organismes aussi différents que des champignons, des plantes, des bactéries ou des êtres humains partagent certaines stratégies moléculaires pour combattre des infections virales, suggérant qu'une part sous-estimée de l'immunité antivirale eucaryote a directement évolué à partir des systèmes de défense bactériens.


Assuntos
Bacteriófagos , Viroses , Vírus , Humanos , Bactérias , Vírus/genética , Bacteriófagos/genética
5.
Elife ; 112022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244541

RESUMO

Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Filogenia , Enxofre/metabolismo
6.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834021

RESUMO

Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.


Assuntos
Vias Biossintéticas , Enzimas/química , Engenharia Metabólica , Metaloproteínas/química , Biologia Sintética , Catálise
7.
Nature ; 589(7840): 120-124, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937646

RESUMO

Viperin is an interferon-induced cellular protein that is conserved in animals1. It has previously been shown to inhibit the replication of multiple viruses by producing the ribonucleotide 3'-deoxy-3',4'-didehydro (ddh)-cytidine triphosphate (ddhCTP), which acts as a chain terminator for viral RNA polymerase2. Here we show that eukaryotic viperin originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins produce a set of modified ribonucleotides that include ddhCTP, ddh-guanosine triphosphate (ddhGTP) and ddh-uridine triphosphate (ddhUTP). We further show that prokaryotic viperins protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, suggesting that it has an antiviral mechanism of action similar to that of animal viperin. Our results reveal a class of potential natural antiviral compounds produced by bacterial immune systems.


Assuntos
Antivirais/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófago T7/imunologia , Evolução Molecular , Células Procarióticas/metabolismo , Proteínas/metabolismo , Antivirais/imunologia , Proteínas Arqueais/química , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/química , Bacteriófago T7/enzimologia , Bacteriófago T7/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Células Procarióticas/imunologia , Células Procarióticas/virologia , Proteínas/química , Proteínas/genética , Ribonucleotídeos/biossíntese , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Transcrição Gênica/efeitos dos fármacos
8.
Nat Chem Biol ; 14(8): 794-800, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29942079

RESUMO

Carbapenems, a family of ß-lactam antibiotics, are among the most powerful bactericidal compounds in clinical use. However, as rational engineering of native carbapenem-producing microbes is not currently possible, the present carbapenem supply relies upon total chemical synthesis of artificial carbapenem derivatives. To enable access to the full diversity of natural carbapenems, we have engineered production of a simple carbapenem antibiotic within Escherichia coli. By increasing concentrations of precursor metabolites and identifying a reducing cofactor of a bottleneck enzyme, we improved productivity by 60-fold over the minimal pathway and surpassed reported titers obtained from carbapenem-producing Streptomyces species. We stabilized E. coli metabolism against antibacterial effects of the carbapenem product by artificially inhibiting membrane synthesis, which further increased antibiotic productivity. As all known naturally occurring carbapenems are derived from a common intermediate, our engineered strain provides a platform for biosynthesis of tailored carbapenem derivatives in a genetically tractable and fast-growing species.


Assuntos
Carbapenêmicos/biossíntese , Escherichia coli/metabolismo , Engenharia Metabólica , Carbapenêmicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...